Lompat ke konten Lompat ke sidebar Lompat ke footer

IPA 9 : KEMAGNETAN BUMI, INDUKSI MAGNET, GAYA LORENTZ DAN INDUKSI ELEKTROMAGNET

 


KEMAGNETAN BUMI, INDUKSI MAGNET, GAYA LORENTZ 

DAN INDUKSI ELEKTROMAGNET


1. KEMAGNETAN BUMI

a. Bumi Sebagai Magnet

Kamu   sudah   mengetahui   sebuah   magnet   batang   yang tergantung  bebas  akan  menunjuk  arah  tertentu.  Pada  bagian  ini, kamu akan mengetahui mengapa magnet bersikap seperti itu. Pada umumnya   sebuah   magnet   terbuat   dari   bahan   besi   dan   nikel. Keduanya memiliki sifat kemagnetan karena tersusun oleh magnet- magnet  elementer.  Batuan-batuan  pembentuk  bumi  juga  mengan- dung  magnet  elementer.  Bumi  dipandang  sebagai  sebuah  magnet batang yang besar yang membujur dari utara ke selatan bumi. Magnet bumi memiliki dua kutub, yaitu kutub utara dan selatan. Kutub utara magnet bumi terletak di sekitar kutub selatan bumi. Adapun kutub  selatan  magnet  bumi  terletak  di  sekitar  kutub  utara  bumi. Magnet  bumi  memiliki  medan  magnet  yang  dapat  memengaruhi jarum kompas dan magnet batang yang tergantung bebas. Medan magnet bumi digambarkan dengan garis-garis leng- kung yang berasal dari kutub selatan bumi menuju kutub utara bumi. Magnet  bumi  tidak  tepat  menunjuk  arah  utara-selatan  geografis. Penyimpangan magnet bumi ini akan menghasilkan garis-garis gaya magnet  bumi  yang  menyimpang  terhadap  arah  utara-selatan  geografis. Adakah pengaruh penyimpangan magnet bumi terhadap jarum kompas?

b. Deklinasi dan Inklinasi

Ambillah sebuah  kompas dan letakkan di atas meja dengan penunjuk  utara (N) tepat menunjuk arah utara. Amatilah kutub utara jarum kompas. Apakah kutub utara jarum kompas tepat menunjuk arah utara (N)? Berapakah sudut yang dibentuk antara kutub utara jarum kompas dengan arah utara (N)?


Jika kita perhatikan kutub utara jarum kompas dalam keadaan setimbang tidak tepat menunjuk arah utara dengan tepat.  Penyimpangan jarum kompas itu terjadi karena letak kutub-kutub magnet bumi tidak tepat berada di kutub-kutub bumi, tetapi menyimpang terhadap letak kutub bumi. Hal ini menyebabkan   garis-garis gaya magnet bumi mengalami penyimpangan terhadap arah utara-selatan bumi.  

Akibatnya  penyimpangan  kutub  utara  jarum  kompas  akan membentuk sudut terhadap arah utara-selatan bumi (geografis). Sudut  yang  dibentuk  oleh  kutub  utara  jarum  kompas  dengan  arah utara-selatan geografis disebut deklinasi . Pernahkah kamu memerhatikan mengapa kedudukan jarum kompas tidak mendatar. Penyimpangan jarum kompas  itu terjadi ka- rena garis-garis gaya magnet bumi tidak sejajar dengan permukaan bumi (bidang horizontal). Akibatnya, kutub utara jarum kompas me- nyimpang naik atau turun terhadap permukaan bumi. Penyimpangan kutub utara jarum kompas akan membentuk sudut terhadap bidang datar permukaan bumi. Sudut yang dibentuk oleh kutub utara jarum kompas dengan bidang datar disebut inklinasi . Alat yang digunakan untuk menentukan besar inklinasi disebut inklinator.

2.  INDUKSI MAGNET

   Medan  magnet  di  sekitar  kawat  berarus  listrik  ditemukan secara tidak sengaja oleh  Hans Christian Oersted (1770-1851), ketika akan memberikan kuliah bagi mahasiswa. Oersted menemukan bahwa di sekitar kawat berarus listrik magnet jarum kompas akan bergerak (menyimpang). Penyimpangan magnet jarum kompas akan makin  besar  jika  kuat  arus  listrik  yang  mengalir  melalui  kawat diperbesar. Arah penyimpangan jarum kompas bergantung arah arus listrik yang mengalir dalam kawat.
Gejala itu terjadi jika kawat dialiri arus listrik. Jika kawat tidak dialiri arus listrik, medan magnet tidak terjadi sehingga magnet jarum kompas tidak bereaksi. Perubahan   arah   arus   listrik   ternyata   juga  memengaruhi perubahan  arah  penyimpangan  jarum  kompas.  Perubahan  jarum kompas menunjukkan perubahan arah medan magnet.
Bagaimanakah  menentukan  arah  medan  magnet  di  sekitar penghantar berarus listrik?
Jika arah arus listrik mengalir sejajar dengan jarum kompas dari kutub selatan menuju kutub utara, kutub utara jarum kompas menyimpang berlawanan dengan arah putaran jarum jam.
Jika arah arus listrik mengalir sejajar dengan jarum kompas dari kutub utara menuju kutub selatan, kutub utara jarum kompas menyimpang searah dengan arah putaran jarum jam.
 
1.   Pola Medan Magnet di Sekitar Arus Listrik
     Gejala  penyimpangan  magnet  jarum  di  sekitar  arus  listrik membuktikan bahwa arus listrik dapat menghasilkan medan magnet.
Arah medan magnet yang ditimbulkan arus listrik dapat diterangkan melalui aturan atau kaidah berikut. Anggaplah suatu peng- hantar berarus listrik digenggam tangan kanan. Jika arus listrik searah ibu jari, arah medan magnet yang timbul searah keempat jari yang menggenggam. Kaidah yang demikian disebut kaidah tangan kanan menggenggam. 
 
2.   Solenoida

Sebuah  penghantar melingkar jika dialiri arus listrik akan menghasilkan medan listrik. Penghantar  melingkar  yang  berbentuk  kumparan  panjang disebut solenoida. Medan magnet yang ditimbulkan oleh solenoida akan lebih besar daripada yang ditimbulkan oleh sebuah penghantar melingkar,  apalagi  oleh  sebuah  penghantar  lurus.  Tahukah  kamu mengapa demikian?
Jika  solenoida  dialiri  arus  listrik  maka  akan  menghasilkan medan magnet. Medan magnet yang dihasilkan solenoida berarus listrik bergantung pada kuat arus listrik dan banyaknya kumparan. Garis-garis gaya magnet pada solenoida merupakan gabungan dari garis-garis gaya magnet dari kawat melingkar. Gabungan itu akan menghasilkan  medan  magnet  yang  sama  dengan  medan  magnet sebuah   magnet   batang   yang   panjang.   Kumparan   seolah-olah mempunyai  dua  kutub,  yaitu  ujung  yang  satu  merupakan  kutub utara  dan  ujung  kumparan  yang  lain  merupakan  kutub  selatan.

ELEKTROMAGNET
Medan magnet yang dihasilkan oleh solenoida berarus listrik tidak terlalu kuat. Agar medan magnet yang dihasilkan solenoida berarus listrik bertambah kuat, maka di dalamnya harus dimasukkan inti besi lunak. Besi lunak merupakan besi yang tidak dapat dibuat menjadi magnet tetap. Solenoida berarus listrik dan dilengkapi de- ngan besi lunak itulah yang dikenal sebagai elektromagnet.

1.  Faktor  yang  Memengaruhi  Kekuatan  Elektromagnet
   Apakah  yang  memengaruhi  besar  medan  magnet  yang  dihasilkan elektromagnet? Sebuah elektromagnet terdiri atas tiga unsur penting, yaitu jumlah lilitan, kuat arus, dan inti besi.

Makin banyak lilitan dan makin besar arus listrik yang mengalir, makin besar medan magnet yang dihasilkan. 
Makin besar (panjang) inti besi yang berada dalam solenoida,  makin  besar  medan  magnet  yang  dihasilkan  elektromagnet. 
Jadi kemagnetan sebuah elektromagnet bergantung   besar kuat  arus  yang  mengalir,  jumlah  lilitan,  dan  besar  inti  besi  yang digunakan.

Karena  itulah  elektromagnet  banyak  digunakan dalam kehidupan sehari-hari. Beberapa keunggulan elektromagnet antara lain sebagai berikut :

a.    Kemagnetannya dapat diubah-ubah dari mulai yang kecil sampai yang besar dengan cara mengubah salah satu atau ketiga dari kuat arus listrik, jumlah lilitan dan ukuran inti besi.
b. Sifat kemagnetannya mudah ditimbulkan dan dihilangkan dengan  cara  memutus  dan  menghubungkan  arus  listrik  meng- gunakan sakelar.
c .   Dapat dibuat berbagai bentuk dan ukuran sesuai dengan kebutuhan yang dikehendaki.
d.   Letak kutubnya dapat diubah-ubah dengan cara mengubah arah arus listrik.

Kekuatan elektromagnet akan bertambah, jika:
a.  arus yang melalui kumparan bertambah,
b.  jumlah  lilitan  diperbanyak,
c.  memperbesar/memperpanjang inti besi.

2.   Kegunaan  Elektromagnet
Beberapa  peralatan  sehari-hari  yang  menggunakan  elektromagnet antara lain seperti berikut.
a.   Bel  listrik
b.   Relai
c.   Telepon
d.   Katrol  Listrik

3. GAYA LORENTZ

Di   depan   telah   dijelaskan   bahwa   kawat   berarus   listrik menimbulkan medan magnet. Apakah yang terjadi jika kawat berarus listrik berada dalam medan magnet tetap?

Interaksi  medan  magnet  dari  kawat  berarus  dengan  medan magnet tetap akan menghasilkan gaya magnet. Pada peristiwa ini terdapat hubungan antara arus listrik, medan magnet tetap, dan gaya magnet.  Hubungan  besaran-besaran  itu  ditemukan  oleh  fisikawan Belanda, Hendrik Anton Lorentz (1853-1928). Dalam penyelidikan- nya  Lorentz  menyimpulkan  bahwa  besar  gaya  yang  ditimbulkan berbanding  lurus  dengan  kuat  arus,  kuat  medan  magnet,  panjang kawat dan sudut yang dibentuk arah arus listrik dengan arah medan magnet.  Untuk  menghargai  jasa  penemuan  H.A.  Lorentz,  gaya tersebut disebut gaya Lorentz. Apabila arah arus listrik tegak lurus dengan arah medan magnet, besar gaya Lorentz dirumuskan.
Dengan: F = B . I . l
F = gaya Lorentz satuan newton (N)
B = kuat medan magnet satuan tesla (T).
l = panjang kawat satuan meter (m)
I = kuat arus listrik satuan ampere (A)

Berdasarkan rumus di atas tampak bahwa apabila arah arus listrik tegak lurus dengan arah medan magnet, besar gaya Lorentz bergantung pada panjang kawat, kuat arus listrik, dan kuat medan magnet. Gaya Lorentz yang ditimbulkan makin besar, jika panjang kawat, kuat arus listrik, dan kuat medan magnet makin besar. Kawat panjangnya 2 m berada tegak lurus dalam medan magnet 20 T. Jika kuat arus listrik yang mengalir 400 mA, berapakah besar gaya Lorentz yang dialami kawat?

Penyelesaian:

Diketahui:   l = 2 m
                   B = 20 T
                    I = 400 mA = 0,4 A
Ditanya:   F = ... ?
Jawab:    F = B x I x l
                  = 20 x 0,4 x 2
                  = 16 N

Arah gaya Lorentz bergantung pada arah arus listrik dan arah medan  magnet.  Untuk  menentukan  arah gaya  Lorentz  digunakan kaidah  atau  aturan  tangan  kanan.  Caranya  rentangkan  ketiga  jari yaitu ibu jari, jari telunjuk, dan jari tengah sedemikian hingga membentuk sudut 90 derajat  (saling tegak lurus). Jika ibu jari menunjukan arah arus listrik (I) dan jari telunjuk menunjukkan arah medan magnet (B) maka arah gaya Lorentz searah jari tengah (F). Dalam bentuk tiga dimensi, arah yang tegak lurus mendekati pembaca diberi simbol. Adapun arah yang tegak lurus menjauhi pembaca diberi simbol.
 
Gaya Lorentz yang ditimbulkan kawat berarus listrik dalam medan magnet dapat dimanfaatkan untuk membuat alat yang dapat mengubah energi listrik menjadi energi gerak. Alat yang menerapkan gaya Lorentz adalah motor listrik dan alat-alat ukur listrik. Motor listrik banyak dijumpai pada tape recorder, pompa air listrik, dan komputer.  Adapun,  contoh  alat  ukur  listrik  yaitu  amperemeter, voltmeter, dan ohmmeter.

4. INDUKSI ELEKTROMAGNET
Induksi elektromagnetik merupakan peristiwa timbulnya arus listrik akibat perubahan fluks magnetik. Fluk magnetik dapat diartikan sebagai banyaknya garis gaya magnet yang menembus suatu bidang. Induksi elektromagnetik pertama kali diselidiki oleh seorang Ilmuwan dari Jerman bernama Michale Faraday. Pada tahun 1821 Michael Faraday berhasil membuktikan bahwa perubahan medan  magnet dapat menimbulkan arus listrik. Di dalam percobaannya, Faraday menggunakan galvanometer, yaitu alat yang digunakan untuk mendeteksi adanya arus listrik kecil. Gaya gerak listrik yang timbul akibat adanya perubahan jumlah garis gaya magnet dinamakan GGL Induksi, Sedangkan arus yang mengalir disebut arus Induksi dan peristiwanya disebut Induksi Elektromagnetik.
Beberapa faktor yang memengaruhi besarnya GGL Induksi sebagai berikut.
1. Kecepatan perubahan medan magnet
    Semakin cepat perubahan medan magnet, GGL induksi yang timbul semakin besar.
2. Jumlah lilitan
     Semakin banyak jumlah lilitannya, GGL induksi yang timbul semakin besar.
3. Kekuatan magnet
    Semakin kuat gejala kemagnetannya, maka GGL induksi yang timbul Juga semakin besar.

Alat-alat Yang Menggunakan Prinsip Kerja Induksi Elektromagnetik
1. Generator
Generator adalah alat yang digunakan untuk merubah energi gerak (kinetik) menjadi energi listrik. Energi gerak yang dimiliki generator dapat diperoleh dari berbagai sumber energi alternatif, misalnya dari energi angin, energi air, dan sebagainya. Generator dibedakan menjadi generator AC (Alternating Current) dan generator DC (Direct Current).
 
Generator AC atau alternator dapat menghasilkan arus listrik bolak-balik dengan cara menggunakan cincin ganda, sedangkan generator DC dapat menghasilkan arus listrik searah dengan cara menggunakan komutator (cincin belah).
2. Dinamo AC-DC
  Dinamo adalah generator yang relatif kecil seperti yang digunakan pada sepeda. Mengapa lampu sepeda kayuh dapat menyala meskipun tidak diberi baterai? Mengapa nyala lampu akan semakin terang apabila kita mengayuh pedal sepeda dengan lebih cepat?
Ternyata pada sepeda terdapat dinamo yang berfungsi sebagai sumber energi listrik untuk menyalakan lampu.
Dinamo adalah alat yang berfungsi untuk merubah energi gerak menjadi listrik. Cara kerja dinamo dan generator hampir sama, termasuk penggunaan satu cincin yang dibelah menjadi dua (komutator) pada dinamo DC dan cincin ganda pada dinamo AC.
 
Perbedaan dinamo dengan generator terletak pada dua komponen utama dinamo, yaitu rotor (bagian yang bergerak) dan stator (bagian yang diam).
Saat sepeda dikayuh dengan cepat, kumparan pada dinamo akan bergerak cepat, sehingga gaya gerak listrik (GGL) induksi yang dihasilkan menjadi lebih kuat dan energi listrik yang dihasilkan menjadi lebih banyak.
 
Selain dengan mempercepat putaran kumparan, penggunaan magnet yang kuat, memperbanyak jumlah lilitan, dan penggunaan inti besi lunak dalam dinamo juga dapat mengakibatkan GGL induksi yang dihasilkan menjadi lebih kuat.
3. Transformator
Salah satu cara menaikkan atau menurunkan tegangan listrik adalah dengan menggunakan transformator.
Berdasarkan penggunaannya, transformator dibagi menjadi dua jenis, yaitu transformator step-down dan transformator step-up.
Transformator step-down berfungsi untuk menurunkan tegangan listrik, sedangkan transformator step-up berfungsi untuk menaikkan tegangan listrik.
 
Transformator pada dasarnya terdiri atas lilitan primer dan lilitan sekunder yang dihubungkan dengan menggunakan inti besi.
Lilitan primer yang mendapat tegangan AC akan menginduksi inti besi hingga menjadi magnet. Perubahan arah arus AC membuat medan magnet yang terbentuk berubah-ubah, sehingga menghasilkan tegangan AC pada ujung-ujung kumparan sekunder.
Besar kecilnya tegangan keluaran yang dihasilkan transformator sangat dipengaruhi oleh jumlah lilitan pada kumparan primer dan sekunder.
Jika jumlah lilitan primernya lebih banyak daripada jumlah lilitan sekunder, maka tegangan pada kumparan sekunder juga akan lebih kecil daripada tegangan pada kumparan sekunder, dan transformator tersebut disebut transformator step down.
Akan tetapi, jika jumlah lilitan primernya lebih sedikit daripada jumlah lilitan sekunder, maka tegangan pada kumparan sekunder akan lebih besar daripada tegangan pada kumparan primer, dan transformator tersebut disebut transformator step up.
Pada transformator ideal, energi listrik yang masuk ke dalam kumparan primer akan dipindahkan seluruhnya ke dalam kumparan 100% atau secara matematis dituliskan sebagai berikut.
 
Pada kenyataannya, tidak pernah dapat dibuat tranformator dengan efisiensi mencapai 100% (ideal), karena biasanya sebagian besar energi listrik . yang masuk ke dalam kumparan primer akan diubah menjadi kalor.
Perubahan energi listrik menjadi kalor ini salah satunya disebabkan oleh adanya arus Eddy pada inti besinya
Perhitungan efisiensi trafo (η) yang tidak ideal tersebut dapat dilakukan dengan menggunakan rumus berikut.
Keterangan:
Pout = daya listrik pada kumparan sekunder.
Pin = daya listrik pada kumparan primer.
Contoh Soal :
Sebuah transformator memiliki 300 lilitan primer dan 30 lilitan sekunder. Jika tegangan pada lilitan primer adalah 220 volt, tentukan:
a. tegangan pada lilitan sekunder;
b. arus listrik yang mengalir pada lilitan sekunder, kika arus listrik yang mengalir pada lilitan primer sebesar 0,5 mA;
c. efisiensi trafo; dan
d. jenis transformator.
Diketahui:
Np = 300 lilitan
Ns = 30 lilitan
Vp = 220 volt
Ip = 0,5 mA
Ditanya:
a. Tegangan sekunder (Vs)
b. Arus sekunder (Is)
c. Efisiensi trafo (η)
d. Jenis transformator
Jawab :
Tegangan sekunder (Vs)
 Arus sekunder (Is)
Efisiensi trafo (η)
 
Jenis trafo
Karena Vp > Vs dan Np > Ns, maka transformator tersebut adalah transformator step down


Posting Komentar untuk "IPA 9 : KEMAGNETAN BUMI, INDUKSI MAGNET, GAYA LORENTZ DAN INDUKSI ELEKTROMAGNET"